首页 | 本学科首页   官方微博 | 高级检索  
     


A multiblock operator‐splitting algorithm for unsteady flows at all speeds in complex geometries
Authors:Siddharth Thakur  Jeffrey Wright
Abstract:This paper describes a non‐iterative operator‐splitting algorithm for computing all‐speed flows in complex geometries. A pressure‐based algorithm is adopted as the base, in which pressure, instead of density, is a primary variable, thus allowing for a unified formulation for all Mach numbers. The focus is on adapting the method for (a) flows at all speeds, and (b) multiblock, non‐orthogonal, body‐fitted grids for very complex geometries. Key features of the formulation include special treatment of mass fluxes at control volume interfaces to avoid pressure–velocity decoupling for incompressible (low Mach number limit) flows and to provide robust pressure–velocity–density coupling for compressible (high‐speed) flows. The method is shown to be robust for all Mach number regimes for both steady and unsteady flows; it is found to be stable for CFL numbers of order ten, allowing large time steps to be taken for steady flows. Enhancements to the method which allow for stable solutions to be obtained on non‐orthogonal grids are also discussed. The method is found to be very reliable even in complex engineering applications such as unsteady rotor–stator interactions in turbulent, all‐speed turbomachinery flows. Copyright © 2004 John Wiley & Sons, Ltd.
Keywords:PISO  unsteady  all‐speed  operator‐splitting
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号