首页 | 本学科首页   官方微博 | 高级检索  
     


A two‐dimensional vertical non‐hydrostatic σ model with an implicit method for free‐surface flows
Authors:Hengliang Yuan  Chin H. Wu
Abstract:An implicit finite difference model in the σ co‐ordinate system is developed for non‐hydrostatic, two‐dimensional vertical plane free‐surface flows. To accurately simulate interaction of free‐surface flows with uneven bottoms, the unsteady Navier–Stokes equations and the free‐surface boundary condition are solved simultaneously in a regular transformed σ domain using a fully implicit method in two steps. First, the vertical velocity and pressure are expressed as functions of horizontal velocity. Second, substituting these relationship into the horizontal momentum equation provides a block tri‐diagonal matrix system with the unknown of horizontal velocity, which can be solved by a direct matrix solver without iteration. A new treatment of non‐hydrostatic pressure condition at the top‐layer cell is developed and found to be important for resolving the phase of wave propagation. Additional terms introduced by the σ co‐ordinate transformation are discretized appropriately in order to obtain accurate and stable numerical results. The developed model has been validated by several tests involving free‐surface flows with strong vertical accelerations and non‐linear waves interacting with uneven bottoms. Comparisons among numerical results, analytical solutions and experimental data show the capability of the model to simulate free‐surface flow problems. Copyright © 2004 John Wiley & Sons, Ltd.
Keywords:implicit  σ   co‐ordinate  non‐hydrostatic pressure  free‐surface flows
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号