首页 | 本学科首页   官方微博 | 高级检索  
     


Anatase TiO2 nanocrystals prepared by mechanochemical synthesis and their photochemical activity studied by EPR spectroscopy
Affiliation:1. Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University, SK-842 15 Bratislava, Slovakia;2. Faculty of Chemical and Food Technology, Institute of Physical Chemistry and Chemical Physics, Slovak University of Technology in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
Abstract:Anatase TiO2 has been prepared by mechanochemical synthesis using TiOSO4·xH2O and Na2CO3 as starting reactants. The reaction was performed in high-energy ball mill using steel and corundum jars, respectively. The final products were obtained by annealing the milled powder in the temperature range of 300–700 °C and subsequently by washing out the water-soluble byproduct Na2SO4·xH2O. When steel jars were used, the annealing in the range of 300–600 °C led to anatase. For products milled in corundum, the stability of anatase increased up to 700 °C. Transition electron microscopy (TEM) showed that crystallites with a size in the range of 20–50 nm with equiaxed morphology were obtained after milling in corundum and annealing at 600 and 700 °C. The process of photoinduced reactive hydroxyl radical generation in aerated aqueous titania suspensions was studied by EPR spectroscopy using spin trapping technique. The presence of iron impurities in the samples milled in steel substantially decreases the radical formation. The rate of radical formation is substantially affected by particle size development of TiO2 nanopowders. The product milled in corundum and annealed at 700 °C outperforms more than twice the photochemical activity of TiO2 Degussa P25 standard.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号