首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Validity of linear acoustics for prediction of waveforms caused by sonically moving laser beams
Authors:A D Pierce  Y H Berthelot
Institution:School of Mechanical Engineering, Georgia Institute of Technology, Atlanta 30332.
Abstract:The question is raised as to whether the analysis of the generation of sound by a laser beam moving over a water surface at the sound speed c for an interminable time period requires consideration of nonlinear effects. A principal consideration in this regard is whether the linear acoustics theory predicts a pressure waveform that is bounded in the asymptotic limit when the laser irradiation time is arbitrarily large. It is shown that a bounded asymptotic limit exists when the upper boundary condition corresponds (as is more nearly appropriate) to that of a pressure release surface, but not when it corresponds to that of a rigid surface. The asymptotic solution to the appropriate inhomogeneous wave equation is given exactly for the former case, and it is shown that the highest asymptotic amplitudes, given specified laser power and beam radius a, occur in the limit of a very small light absorption coefficient mu. In this limit, the peak amplitude is independent of mu and occurs at a depth of 0.88/mu. An approximate solution for the pressure waveform at intermediate times establishes that the characteristic time for buildup to the asymptotic limit is of the order of 2.5/(c mu 2a). If this time is substantially shorter than the time that a plane-wave pulse with the asymptotic waveform would take to develop a shock wave, then accumulative nonlinear effects are of minor importance.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号