1. Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, 845 38, Bratislava, Slovak Republic 2. Department of Graphic Arts Technology and Applied Photochemistry, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, 812 37, Bratislava, Slovak Republic
Abstract:
We report on an ultrasensitive label-free lectin-based impedimetric biosensor for the determination of the sialylated glycoproteins fetuin and asialofetuin. A sialic acid binding agglutinin from Sambucus nigra I was covalently immobilised on a mixed self-assembled monolayer (SAM) consisting of 11-mercaptoundecanoic acid and 6-mercaptohexanol. Poly(vinyl alcohol) was used as a blocking agent. The sensor layer was characterised by atomic force microscopy, electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy. The biosensor exhibits a linear range that spans 7 orders of magnitude for both glycoproteins, with a detection limit as low as 0.33 fM for fetuin and 0.54 fM for asialofetuin. We also show, by making control experiments with oxidised asialofetuin, that the biosensor is capable of quantitatively detecting changes in the fraction of sialic acid on glycoproteins. We conclude that this work lays a solid foundation for future applications of such a biosensor in terms of the diagnosis of diseases such as chronic inflammatory rheumatoid arthritis, genetic disorders and cancer, all of which are associated with aberrant glycosylation of protein biomarkers.
Figure
Key aspects of the biosensor: 1) mixed SAM formation, 2) immobilisation of lectin & blocking and 3) a glycoprotein recognition.