首页 | 本学科首页   官方微博 | 高级检索  
     


Electrocatalytic performance of fuel oxidation by Pt3Ti nanoparticles
Authors:Abe Hideki  Matsumoto Futoshi  Alden Laif R  Warren Scott C  Abruña Héctor D  DiSalvo Francis J
Affiliation:Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, USA. abe.hideki@nims.go.jp
Abstract:A Pt-based electrocatalyst for direct fuel cells, Pt3Ti, has been prepared in the form of nanoparticles. Pt(1,5-cyclooctadiene)Cl2 and Ti(tetrahydrofuran)2Cl4 are reduced by sodium naphthalide in tetrahydrofuran to form atomically disordered Pt3Ti nanoparticles (FCC-type structure: Fm3m; a = 0.39 nm; particle size = 3 +/- 0.4 nm). These atomically disordered Pt3Ti nanoparticles are transformed to larger atomically ordered Pt3Ti nanoparticles (Cu3Au-type structure: Pm3m; a = 0.3898 nm; particle size = 37 +/- 23 nm) by annealing above 400 degrees C. Both atomically disordered and ordered Pt3Ti nanoparticles show lower onset potentials for the oxidation of formic acid and methanol than either pure Pt or Pt-Ru nanoparticles. Both atomically disordered and ordered Pt3Ti nanoparticles show a much lower affinity for CO adsorption than either pure Pt or Pt-Ru nanoparticles. Atomically ordered Pt3Ti nanoparticles show higher oxidation current densities for both formic acid and methanol than pure Pt, Pt-Ru, or atomically disordered Pt3Ti nanoparticles. Pt3Ti nanoparticles, in particular the atomically ordered materials, have promise as anode catalysts for direct fuel cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号