首页 | 本学科首页   官方微博 | 高级检索  
     


Molecular simulation study of the glass transition in a soft primitive model for ionic liquids
Authors:A. Rodríguez-Rivas  J. M. Romero-Enrique
Affiliation:1. Departamento de Física, Universidad de Extremadura, Badajoz, Spain;2. Departamento de Física Atómica, Molecular y Nuclear, Area de Física Teórica, Universidad de Sevilla, Sevilla, Spain"ORCIDhttps://orcid.org/0000-0002-1509-5765
Abstract:In this paper, we present a molecular dynamics study of the glass transition for a soft-core primitive model for ionic liquids, in which cations are fully flexible chains of tangent soft spherical monomers, being the positively charged monomer at one of the ends of the chain, and anions as charged soft spheres. We have monitored transport coefficients such as the self-diffusion coefficients and the shear viscosity, as well as correlation functions such as the mean-square displacement, the self-intermediate scattering function, and probes of heterogeneous dynamics such as the van Hove distribution function and the four-points susceptibility. The analysis of these properties indicates that, for a given pressure, the glass transition shows a weak temperature dependence on the cation length, occurring first for short-chain than for long-chain ionic liquids.
Keywords:Molecular dynamics  glass transition  ionic liquids
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号