首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structures and binding energies for complexations of different spin states of Ni+ and Ni2+ to aromatic molecules
Authors:Boutheïna Kerkeni  Adelia J A Aquino  Michael R Berman
Institution:1. Département de Physique, Laboratoire de Physique de la Matière Condensée (LPMC), Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia;2. Institut Supérieur des Arts Multimédia de la, Université de la Manouba, Manouba, Tunisia;3. Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, Meudon, FranceBoutheina.kerkeni@obspm.fr;5. Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA;6. School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, People’s Republic of China;7. Air Force Office of Scientific Research, Arlington, VA, USA
Abstract:Abstract

Density functional theory calculations, using the B3LYP parameterisation, were performed to determine structures, vibrational frequencies, and binding energies for complexation of Ni+ and Ni2+ cations with benzene and naphthalene molecules and clusters. The calculations employed the Stuttgart basis set with ECP pseudo potentials for the Ni cations and basis sets of at least triple ζ plus polarisation, and diffuse quality for C and H. The effect of electron correlation on non-bonded interactions was accounted for by the Grimme GD3 dispersion correction. Counterpoise computations were made for BSSE. Comparison between experiment and theory provide fascinating new insight into the bonding for these prototypical organometallic (OM) complexes. These structures have a sandwich topology, indicating major structural reorganisations occuring when benzene or naphthalene interact with Ni cations. Adiabatic electron affinities and ionisation potentials agree well with experiment when available. Binding energies were also determined, providing insight into the stability of the complexes. The results presented here provide important information for future studies to address additional investigations of both problems of the electronic structure properties of these complexes, as well as the role of the polycyclic aromatic hydrocarbons (PAHs) in the interstellar medium (ISM) and soot formation in combustion. The Ni+/Ni2+ + aromatic organometallic bonding is of the same order of stability as an aromatic C–H bond. Such bonding modifies the IR spectrum of the complexed aromatic molecules by enhancing the 3.3?μm feature and decreasing the C–H bands in the 11–12?μm range (γ C–H). Organometallic complexation reactions may contribute significantly to metal depletion in the ISM.
Keywords:Benzene  naphthalene  transition metal complexations  gas phase organometallic ion chemistry
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号