首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives
Authors:Markus Bödenler  Ludovic de Rochefort  P James Ross  Nicolas Chanet  Geneviève Guillot  Gareth R Davies
Institution:1. Institute of Medical Engineering, Graz University of Technology, Graz, Austriam.boedenler@tugraz.at;3. CNRS, Center for Magnetic Resonance in Biology and Medicine (CRMBM) UMR 7339, Aix Marseille Univ, Marseille, France;4. Aberdeen Biomedical Imaging Centre, University of Aberdeen, Aberdeen, UK;5. Imagerie par Résonance Magnétique Médicale et Multi-Modalités, IR4M UMR 8081, Université Paris Saclay, Orsay, France
Abstract:ABSTRACT

Fast field-cycling (FFC) nuclear magnetic resonance relaxometry is a well-established method to determine the relaxation rates as a function of magnetic field strength. This so-called nuclear magnetic relaxation dispersion gives insight into the underlying molecular dynamics of a wide range of complex systems and has gained interest especially in the characterisation of biological tissues and diseases. The combination of FFC techniques with magnetic resonance imaging (MRI) offers a high potential for new types of image contrast more specific to pathological molecular dynamics. This article reviews the progress in FFC-MRI over the last decade and gives an overview of the hardware systems currently in operation. We discuss limitations and error correction strategies specific to FFC-MRI such as field stability and homogeneity, signal-to-noise ratio, eddy currents and acquisition time. We also report potential applications with impact in biology and medicine. Finally, we discuss the challenges and future applications in transferring the underlying molecular dynamics into novel types of image contrast by exploiting the dispersive properties of biological tissue or MRI contrast agents.
Keywords:Field-cycling  FFC-MRI  delta relaxation enhanced MR  dispersion  NMRD
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号