Abstract: | This paper reports on experimental investigations on relativistic self-focusing and self-channeling of a terawatt laser pulse (0.7 TW⩽P⩽15 TW) in an underdense plasma. We present results obtained with picosecond (τ=1 ps) and subpicosecond (τ=0.4 ps) pulses. In the “long pulse” regime, modifications in the laser propagation are observed for P c, the critical power for self-focusing. By contrast, self-guiding of subpicosecond pulses is observed for P≈Pc. Using a paraxial envelope model describing the laser propagation and taking into account the plasma response to the ponderomotive force, it is shown that a maximum laser intensity of 5-15 times that reached in vacuum may be achieved when P is in the (1.25-4)×Pc range. It is also demonstrated that ion motion may significantly reduce the effective Pc |