首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Conformational analysis of L-prolines in water
Authors:Aliev Abil E  Courtier-Murias Denis
Institution:Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, United Kingdom. a.e.aliev@ucl.ac.uk
Abstract:The results of the ring conformational analysis of L-proline, N-acetyl-L-proline, and trans-4-hydroxy-L-proline by NMR combined with calculations using density functional theory (DFT) and molecular dynamics (MD) are reported. Accurate values of 1H-1H J-couplings in water and other solvents have been determined. Using a two-site equilibrium model, the Cgamma-endo conformer of L-proline in water has been identified as intermediate between gammaTdelta twist(Cgamma-endo, Cdelta-exo)] and gammaE envelope(Cgamma-endo)] and the Cgamma-exo conformer as betaTgamma. Both conformers were equally populated at room temperature. The N-acetyl cis-rotamer gammaTbeta(80%)/gammaE(20%) and trans-rotamer gammaTbeta(61%)/gammaE(39%)] and 4-hydroxy (gammaEpsilon) derivatives showed significant changes in both the population and the geometries of the preferred ring conformers. The combination of NMR predicted populations with the DFT B3LYP/6-311+G(2d,p)/IEFPCM calculations proved successful, resulting in fairly accurate predictions of J-couplings. Simulations using MD were mostly in favor of the two-site equilibrium model between Cgamma-endo and Cgamma-exo conformers, similar to that used for the analysis of NMR J-couplings. Various force fields examined for MD simulations failed to reproduce the ring conformational geometries and populations of L-proline in water accurately, while significantly better agreement with NMR was found for trans-N-acetyl-L-proline using GROMOS and AMBER force fields.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号