Layer double hydroxides (LDHs)- based electrochemical and optical sensing assessments for quantification and identification of heavy metals in water and environment samples: A review of status and prospects |
| |
Affiliation: | 1. Key Laboratory for Large-Format Battery Materials and System, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China;2. State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China |
| |
Abstract: | One of the most severe environmental problems is heavy metal contamination, putting the world's sustainability at risk. Much effort has been put into developing sensors that can be taken anywhere to detect the environmental effects of heavy metals. Sensitivity, selectivity, multiplexed detection ability, and mobility enhance significantly when nanoparticles and nanostructures are incorporated into sensors. LDHs (layered double hydroxides) have gotten much attention in analytical chemistry in recent years because of their benefits, including their large specific surface area, ease of synthesis, low cost, and high catalytic efficiency and biocompatibility. LDHs are often manufactured as nanomaterial composites or created with specialized three-dimensional structures depending on the application. However, in these settings, LDHs (as color indicators, extracting sorbents, and electrochemical sensing) are usually restricted. Upcoming signs of progress and development possibilities of LDHs in analytical chemistry are reviewed in this paper to assist overcome these problems. Furthermore, the approaches used in the design of LDHs, including structural aspects, are defined and assessed in preparation for future analytical applications. The latest advances in optical and electrochemical sensors to detect heavy metals are described in this review. The sorts and characteristics of LDHs will be explored first. We will then go into microelectrode (or nanoelectrode) arrays, nanoparticle-modified electrodes, and microfluidic optical and electrochemical sensing assays in detail. This paper also discusses design strategies for LDH-based nanostructured sensors and the advantages of using nanomaterials and nanostructures. |
| |
Keywords: | Heavy metals Layer double hydroxide Electrochemical sensing platforms Optical assays |
本文献已被 ScienceDirect 等数据库收录! |
|