首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of Peptide Backbone Amide-to-Ester Bond Substitution on the Cleavage Frequency in Electron Capture Dissociation and Collision-Activated Dissociation
Authors:Frank Kjeldsen  Roman A Zubarev
Institution:(1) Department for Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark;(2) Department of Molecular Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden;(3) Science for Life Laboratory, Stockholm, Sweden
Abstract:Probing the mechanism of electron capture dissociation on variously modified model peptide polycations has resulted in discovering many ways to prevent or reduce $ {\text{N}} - {{\text{C}}_α } $ {\text{N}} - {{\text{C}}_α } bond fragmentation. Here we report on a rare finding of how to increase the backbone bond dissociation rate. In a number of model peptides, amide-to-ester backbone bond substitution increased the frequency of $ {\text{O}} - {{\text{C}}_α } $ {\text{O}} - {{\text{C}}_α } bond cleavage (an analogue of $ {\text{N}} - {{\text{C}}_α } $ {\text{N}} - {{\text{C}}_α } bonds in normal peptides) by several times, at the expense of reduced frequency of cleavages of the neighboring $ {\text{N}} - {{\text{C}}_α } $ {\text{N}} - {{\text{C}}_α } bonds. In contrast, the ester linkage was only marginally broken in collisional dissociation. These results further highlight the complementarity of the reaction mechanisms in electron capture dissociation (ECD) and collision-activated dissociation (CAD). It is proposed that the effects of amide-to-ester bond substitution on fragmentation are mainly due to the differences in product ion stability (ECD, CAD) as well as proton affinity (CAD). This proposal is substantiated by calculations using density functional theory. The implications of these results in relation to the current understanding of the mechanisms of electron capture dissociation and electron transfer dissociation are discussed.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号