首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A full potential all-electron calculation on electronic structure of NiO
Authors:Ru-song Li  Du-qiang Xin  Shi-qi Huang  Zhi-jian Wang  Ling Huang  Xiao-hua Zhou
Institution:Xijing University, Xijing Road, Xi''an 710123, PR China
Abstract:We perform a first principle calculation on NiO system, a prototypical correlated electronic system due to partial filled 3d electronic shell, using various density functional theory (DFT) and hybrid functional methods inclusion of spin polarization (SP), on-site Coulomb repulsion U and spin–orbit coupling (SOC) effects. It is shown that localized spin density approximation (LSDA) plus U (LSDA?+?U) correctly reproduce experimental lattice parameter, while spin polarization generalized gradient approximation (SP?+?GGA?+?U) obviously overestimates lattice parameter. LSDA?+?U/SP?+?GGA?+?U band gaps and magnetic moments are in agreement with experimental data, and correctly predict NiO to be an insulator. NiO undergoes a Mott–Hubbard metal–insulator transition (MIT) by addition of Coulomb interaction U. Our LSDA?+?SOC calculation shows that SOC further splitting of Ni d eg and t2g orbitals into dz2, dxy, dx2y2 and dxz?+?dyz orbitals, and SP nearly cancels out SOC effect, giving rise to symmetry of density of states (DOS) for spin-up and spin-down states, hence appearance of zero net magnetic moment. For LSDA?+?U?+?SOC calculation, combination effect of SP, U and SOC results in non-occupying of spin-up conduction band and a negligible density of states for spin-down states.
Keywords:Linear augmentation plane wave  On-site Coulomb repulsion  Spin–orbit coupling  Density of state
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号