首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical nonlinear inverse problem of determining wall heat flux
Authors:J. Zueco  F. Alhama  C. F. González Fernández
Affiliation:(1) Department of Thermal Engineering and Fluids, Technical University of Cartagena, Cartagena, 30202, Spain;(2) Department of Applied Physics, Technical University of Cartagena, Cartagena, 30202, Spain
Abstract:The inverse problem of determining time-variable surface heat flux in a plane wall, with constant or temperature dependent thermal properties, is numerically studied. Different kinds of incident heat flux, including rectangular waveform, are assumed. The solution is numerically solved as a function estimation problem, so that no a priori information for the functional waveforms of the unknown heat flux is needed. In all cases, a solution in the form of a piece-wise function is used to approach the incident flux. Transient temperature measurements at the boundary, from the solution of the direct problem, served as the simulated experimental data needed as input for the inverse analysis. Both direct and inverse heat conduction problems are solved using the network simulation method. The solution is obtained step-by-step by minimising the classical functional that compares the above input data with those obtained from the solution of the inverse problem. A straight line of variable slope and length is used for each one of the stretches of the desired solution. The influence of random error, number of functional terms and the effect of sensor location are studied. In all cases, the results closely agree with the solution.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号