首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study of acyl group migration by femtosecond transient absorption spectroscopy and computational chemistry
Authors:Pritchina Elena A  Gritsan Nina P  Burdzinski Gotard T  Platz Matthew S
Institution:Department of Chemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
Abstract:The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号