Spectroscopy and predissociation of the 3A2 electronic state of ozone 16O3 and 18O3 by high resolution Fourier transform spectrometry |
| |
Authors: | Bouvier A J Wannous G Churassy S Bacis R Brion J Malicet J Judge R H |
| |
Affiliation: | Laboratoire de Spectrométrie Ionique et Moleculaire (associé au CNRS UMR 5579), Université Claude Bernard Lyon I, Villeurbanne, France. bouvier@in2p3.fr |
| |
Abstract: | A high resolution Fourier transform spectrometry analysis of the rotational structure of the 2(0)1 absorption bands of the 3A2<--X1A1 Wulf transition for the isotopomers 16O3 and 18O3 of the ozone molecule is presented. These bands are very intense compared to the 0(0)0 bands but the predissociation is so strong that the main sub-bands appear as continuous contours. Isolated lines and band contour methods are used together to analyse these two rovibrational bands. The lines corresponding to the F2 component are generally the most intense and isolated. Our data sets for the (0 1 0) level of the 3A2 state are limited to about 102 weakly or unperturbed rotational lines for the 2(0)1 of 16O3 in the range 9620-10,140 cm(-1) and 123 weakly or unperturbed rotational lines for the same band of 18O3. Using for each of them the well-defined ground state parameters, we obtained a standard deviation of about 0.035 cm(-1) in the fit to the lines for 16O3 and 0.027 cm(-1) in the case of 18O3. The rotational constants A, B and C, the three rotational distortion terms deltaK, deltaJK and deltaJ, the spin-rotation constants a0, a and b have been successfully calculated for 16O3 and 18O3 while the spin-spin constants were fixed to their respective values obtained for the origin bands. As is the case for the 0(0)0 band, we have a partial agreement with the isotopic laws for the rotational constants. The geometrical parameters of the (0 1 0) level of 3A2 state for the two isotopomers are close, r = 1.357 A, theta = 100.7 degrees for 18O3 and r = 1.352 A and theta = 100.0 degrees for 16O3. The origin of the 2(0)1 band of 18O3 is red shifted by 7.06(4) cm(-1) with respect to 16O3 2(0)1 band and the two bending mode quanta are, respectively, 528.99(9) and 501.34(7) cm(-1). A preliminary qualitative analysis of the predissociation is given in the particular case of the F2 spin component of 16O3 for 0(0)0 and 2(0)1 bands by the measurement of shifts of positions of some rovibrational levels and the evolution of predissociation broadenings in (Q)Q2 branches. We justify the existence of perturbations in the rovibrational levels of 3A2 state through different interaction types: with the dissociation continuum of the same electronic state or with high vibrational repulsive or weakly bound levels of the ground state. |
| |
Keywords: | |
本文献已被 ScienceDirect PubMed 等数据库收录! |
|