首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of electric field and magnetic field on spin transport in bilayer graphene armchair nanoribbons: A Monte Carlo simulation study
Authors:Akshaykumar Salimath  Bahniman Ghosh
Institution:1. Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India;2. Microelectronics Research Center, 10100 Burnet Road, Bldg. 160, University of Texas at Austin, Austin, TX 78758, United States
Abstract:In this article we study the effect of external magnetic field and electric field on spin transport in bilayer armchair graphene nanoribbons (GNR) by employing semiclassical Monte Carlo approach. We include D'yakonov-Perel' (DP) relaxation due to structural inversion asymmetry (Rashba spin-orbit coupling) and Elliott-Yafet (EY) relaxation to model spin dephasing. In the model we neglect the effect of local magnetic moments due to adatoms and vacancies. We have considered injection polarization along z-direction perpendicular to the plane of graphene and the magnitude of ensemble averaged spin variation is studied along the x-direction which is the transport direction. To the best of our knowledge there has been no theoretical investigation of the effects of external magnetic field on spin transport in graphene nanoribbons. This theoretical investigation is important in order to identify the factors responsible for experimentally observed spin relaxation length in graphene GNRs.
Keywords:Bilayer armchair graphene nanoribbon  Spin transport  Scattering  Spin relaxation lengths  Monte Carlo method  Magnetic field  Electric field
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号