首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Experimental investigation on the flame front resistance of gas channel growth with melt formation in iron ore sinter beds
Authors:Hao Zhou  Mingxi Zhou  Pengnan Ma  Ming Cheng
Institution:State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, PR China
Abstract:The resistance of the flame front within the solid bed constitutes a fundamental and crucial area in porous bed combustion as the flame front propagation is highly related to the productivity and product quality. This paper focuses on the iron ore sintering, a thermal agglomeration process in steel mills. The results from a detailed experimental study of the pilot-scale pot tests under the conditions of a wide range of fuel rate are presented. The primary objective is to provide better understanding of the growth of gas channels relating to melt formation in the flame front and its resistance to flow. The sintering bed was divided into several zones based on the temperature profile and component distribution. Even though there is a continuous one-to-one replacement of humidified zone with porous sintered zone, a constant air flow rate during sintering could be obtained, indicating the ~100?mm high-temperature zone has a controlling effect on sintering bed permeability. The specific pressure drop value in high-temperature zone increases from ~3?kPa in upper bed to ~7?kPa in bottom bed, which varies with the bed temperature and structure properties. Both the green bed and sintered bed were scanned by X-ray computed tomography, the reconstruction and image analysis showed that the sintered bed has large gas channels and many more closed pores due to solid-melt-gas coalescence. More melt is generated when the heat is accumulated along the bed or input higher coke content, showing a propensity to suppress the gas channel growth and amplify the mismatch of gas transportation along the bed. Higher coke rate leads to a higher resistance in flame front, resulting in a slower flame front speed. These results are aimed to provide quantitative validation for improvements of a numerical sintering model in a future work.
Keywords:Flame front resistance  Porous structure  Gas channel  Sinter bed  X-ray tomography
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号