首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computational study of singlet and triplet sulfonylnitrenes insertion into the C―C or C―H bonds of ethylene
Authors:Anton V Kuzmin  Bagrat A Shainyan
Institution:A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Division of the Russian Academy of Science, , Irkutsk, 664033 Russian Federation
Abstract:Formation of N‐sulfonylaziridines, N‐ethylidenesulfonamides, N‐vinylsulfonamides and 4,5‐dihydro‐1,2,3‐oxathiazole 2‐oxides by the reaction of singlet and triplet trifluoromethyl‐, methyl‐ and tosylnitrenes with ethylene is studied computationally at the B3LYP/6‐311++G(d,p) level of theory in both gas phase and in solution. Singlet sulfonylnitrenes react with ethylene via 1 + 2]‐cycloaddition exothermically to give N‐sulfonylaziridines. Triplet sulfonylnitrenes are formed from the singlet ones by the intersystem crossing with the energy barrier not exceeding 2.5 kcal/mol and react in a stepwise fashion by C‐addition or H‐abstraction. The C‐addition gives rise to the formation of N‐sulfonylaziridines or N‐ethylidenesulfonamides depending on the S―N―Csp3―Csp2 dihedral angle, with the barrier to rotation about the N―Csp3 bond not exceeding 2.5 kcal/mol. The H‐abstraction results in N‐vinylsulfonamides. Transformation of N‐sulfonylaziridines to N‐ethylidenesulfonamides requires to overcome the barrier of 57–60 kcal/mol, N‐ethylidenesulfonamides to 4,5‐dihydro‐1,2,3‐oxathiazole 2‐oxides—74–80 kcal/mol and N‐vinylsulfonamides to N‐ethylidenesulfonamides—about 64 kcal/mol. The use of the polarizable continuum model does not lead to a change of the course of the reaction of trifluoromethanesulfonylnitrene with ethylene and only slightly affects the relative energies of the products, intermediates and transition states. Copyright © 2014 John Wiley & Sons, Ltd.
Keywords:sulfonylnitrenes  N‐sulfonylaziridines  N‐vinyl‐N‐sulfonylamides  N‐ethylidenesulfonamides  DFT calculations  PCM
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号