首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles
Authors:Larumbe S  Gómez-Polo C  Pérez-Landazábal J I  Pastor J M
Affiliation:Departamento de Fisica, Universidad Pública de Navarra, Campus de Arrosadía, 31006 Pamplona, Spain.
Abstract:In this work the effect of a SiO2 coating on the magnetic properties of Fe3O4 nanoparticles obtained by the sol-gel method is analyzed. Two sets of samples were prepared: Fe3O4 nanoparticles and Fe3O4@SiO2 core-shell composites. The samples display the characteristic spinel structure associated with the magnetite Fe3O4 phase, with the majority of grain sizes around 5-10 nm. At room temperature the nanoparticles show the characteristic superparamagnetic behavior with mean blocking temperatures around 160 and 120 K for Fe3O4 and Fe3O4@SiO2, respectively. The main effect of the SiO2 coating is reflected in the temperature dependence of the high field magnetization (μ(0)H = 6 T), i.e. deviations from the Bloch law at low temperatures (T < 20 K). Such deviations, enhanced by the introduction of the SiO2 coating, are associated with the occurrence of surface spin disordered effects. The induction heating effects (magnetic hyperthermia) are analyzed under the application of an AC magnetic field. Maximum specific absorption rate (SAR) values around 1.5 W g(-1) were achieved for the Fe3O4 nanoparticles. A significant decrease (around 26%) is found in the SAR values of the SiO2 coated nanocomposite. The different heating response is analyzed in terms of the decrease of the effective nanoparticle magnetization in the Fe3O4@SiO2 core-shell composites at room temperature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号