首页 | 本学科首页   官方微博 | 高级检索  
     检索      


REACTIVITY OF EXCITED STATES OF FLAVIN AND 5-DEAZAFLAVIN IN ELECTRON TRANSFER REACTIONS
Authors:Rainer  Traber  Ekehardt  Vogelmann  Siegfried  Schreiner  Tilmann  Werner Horst E A  Kramer†
Institution:Institut für Physikalische Chemie der Universität Stuttgart, Pfaffenwaldring 55, D-7000 Stuttgart 80, W. Germany
Abstract:Abstract— Quenching of the excited states of lumiflavin and 3-methyl-5-deazalumiflavin by methyl-and methoxy-substituted benzenes and naphthalenes in methanol was investigated. The observed difference in the reactivity of acid and neutral lumiflavin triplets is explained thermodynamically by applying the Michaelis cycle, as being due to the higher reduction potential of the acid triplet. In this connection the p K values of lumiflavin triplet (p K M= 6.5) and semiquinone (p K M= 11.3) have also been determined in methanol. The difference in the reactivity between the singlet and triplet states of lumiflavin is found to be greater as predicted by the difference in excitation energy. The reactivities of the excited states of flavin and 5-deazaflavin differ only slightly in contrast to the marked difference in the ground state reactivities of electron transfer reactions. This is explained in terms of the model of Rehm and Weller. The pH dependence of the electron transfer quenching of 5-deazaflavin triplet was investigated in water, yielding a triplet p K of 2.5. In contrast to the flavin, this triplet p K does not significantly differ from the p K of the 5-deazaflavin ground state. From this, different sites of protonation are deduced for the photoexcited triplet states of flavin and 5-deazaflavin.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号