首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Measurement of Colloidal Stability in Solutions of Simple, Nonadsorbing Polyelectrolytes
Authors:Amber Sharma  Su Nee Tan  John Y Walz
Institution:Department of Chemical Engineering, Tulane University, New Orleans, Louisiana, 70118
Abstract:The stability of a solution of charged polystyrene particles in the presence of nonadsorbing polyelectrolyte macromolecules is measured using optical light scattering. The particles were negatively charged polystyrene latex spheres (0.5–1 μm diameter) while the macromolecules were simulated using negatively charged colloidal silica spheres (5–7 nm diameter). Because of the electrostatic repulsion between the particles, the solution is found to be stable against primary flocculation (irreversible flocculation into a primary energy minima). However, because of long-range attractive depletion forces, reversible secondary flocculation of the particles occurs into a local potential energy minimum. As observed with uncharged macromolecules, the polyelectrolyte first induces flocculation at a critical flocculation concentration (v*), but later restabilizes the system at a critical restabilization concentration (v**). These critical concentrations are found to decrease with decreasing macromolecule size and increasing particle size. The restabilized solutions are found to remain suspended for periods greater than 20 days. Comparison of the measured flocculation and restabilization results to predictions made using a recently developed force-balance model show qualitative agreement.
Keywords:depletion forces  colloidal stability  flocculation  polyelectrolytes  colloidal forces  phase separation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号