首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Electromagnetohydrodynamic flows and mass transport in curved rectangular microchannels
Authors:Yongbo LIU  Yongjun JIAN
Institution:School of Mathematical Science, Inner Mongolia University, Hohhot 010021, China
Abstract:Curved microchannels are often encountered in lab-on-chip systems because the effective axial channel lengths of such channels are often larger than those of straight microchannels for a given per unit chip length. In this paper, the effective diffusivity of a neutral solute in an oscillating electromagnetohydrodynamic(EMHD)flow through a curved rectangular microchannel is investigated theoretically. The flow is assumed as a creeping flow due to the extremely low Reynolds number in such microflow systems. Through the theoretical analysis, we find that the effective diffusivity primarily depends on five dimensionless parameters, i.e., the curvature ratio of the curved channel, the Schmidt number, the tidal displacement, the angular Reynolds number, and the dimensionless electric field strength parameter. Based on the obtained results, we can precisely control the mass transfer characteristics of the EMHD flow in a curved rectangular microchannel by appropriately altering the corresponding parameter values.
Keywords:electromagnetohydrodynamic (EMHD) flow  curved rectangular microchannel  mass transfer characteristic  effective diffusivity  
本文献已被 CNKI 等数据库收录!
点击此处可从《应用数学和力学(英文版)》浏览原始摘要信息
点击此处可从《应用数学和力学(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号