首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A computer simulation study of imaging flexural inhomogeneities using plate-wave diffraction tomography
Authors:Rohde A H  Veidt M  Rose L R F  Homer J
Institution:a School of Engineering, The University of Queensland, Brisbane 4072, Australia
b Platform Sciences Laboratory, Defence Science Technology Organisation, Melbourne 3001, Australia
c School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane 4072, Australia
Abstract:This paper investigates the feasibility of plate-wave diffraction tomography for the reconstruction of flexural inhomogeneities in plates using the results of computer simulation studies. The numerical implementation of the fundamental reconstruction algorithm, which has recently been developed by Wang and Rose C.H. Wang, L.R.F. Rose, Plate-wave diffraction tomography for structural health monitoring, Rev. Quant. Nondestr. Eval. 22 (2003) 1615-1622] is investigated addressing the essential effects of applying the discrete form of the Fourier diffraction theorem for solving the inverse problem as discussed by Kak and Slaney A.C. Kak, M. Slaney, Principles of Computerized Tomographic Imaging, IEEE Press, New York, 1988] for the acoustic case, viz. diffraction limited sensitivity, influence of weak scatterer assumption, damage location and scatter field data processing in time and Fourier space as well as experimental limitations such as finite receiver length and limited views. The feasibility of the imaging technique is investigated for cylindrical inhomogeneities of various severities and relative position within the interrogation space and a normal incident interrogation configuration. The results show that plate-wave diffraction tomography enables the quantitative reconstruction of location, size and severity of plate damage with excellent sensitivity and offers the potential for detecting corrosion thinning, disbonds and delamination damage in structural integrity management applications.
Keywords:43  20  43  35  43  60
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号