首页 | 本学科首页   官方微博 | 高级检索  
     检索      


New insight into selective catalytic reduction of nitrogen oxides by ammonia over H-form zeolites: a theoretical study
Authors:Li Jun  Li Shuhua
Institution:School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Laboratory of Mesoscopic Chemistry, Nanjing University, Nanjing, 210093, People's Republic of China.
Abstract:Density functional theory calculations were carried out to investigate the reaction mechanism of selective catalytic reduction of nitrogen oxides by ammonia in the presence of oxygen at the Br?nsted acid sites of H-form zeolites. The Br?nsted acid site of H-form zeolites was modeled by an aluminosilicate cluster containing five tetrahedral (Al, Si) atoms. A low-activation-energy pathway for the catalytic reduction of NO was proposed. It consists of two successive stages: first NH(2)NO is formed in gas phase, and then is decomposed into N(2) and H(2)O over H-form zeolites. In the first stage, the formation of NH(2)NO may occur via two routes: (1) NO is directly oxidized by O(2) to NO(2), and then NO(2) combines with NO to form N(2)O(3), which reacts with NH(3) to produce NH(2)NO; (2) when NO(2) exceeds NO in the content, NO(2) associates with itself to form N(2)O(4), and then N(2)O(4) reacts with NH(3) to produce NH(2)NO. The second stage was suggested to proceed with low activation energy via a series of synergic proton transfer steps catalyzed by H-form zeolites. The rate-determining step for the whole reduction of NO(x) is identified as the oxidation of NO to NO(2) with an activation barrier of 15.6 kcal mol(-1). This mechanism was found to account for many known experimental facts related to selective catalytic reduction of nitrogen oxides by ammonia over H-form zeolites.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号