首页 | 本学科首页   官方微博 | 高级检索  
     


Intensity enhancement and selective detection of proximate solvent molecules by molecular near-field effect in resonance hyper-Raman scattering
Authors:Shimada Rintaro  Kano Hideaki  Hamaguchi Hiro-o
Affiliation:Department of Chemistry, School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan.
Abstract:A new molecular phenomenon associated with resonance hyper-Raman (HR) scattering in solution has been discovered. Resonance HR spectra of all-trans-beta-carotene and all-trans-lycopene in various solvents exhibited several extra bands that were not assignable to the solute but were unequivocally assigned to the solvents. Neat solvents did not show detectable HR signals under the same experimental conditions. Similar experiments with all-trans-retinal did not exhibit such enhancement either. All-trans-beta-carotene and all-trans-lycopene have thus been shown to induce enhanced HR scattering of solvent molecules through a novel molecular effect that is not associated with all-trans-retinal. We call this new effect the "molecular near-field effect." In order to explain this newly found effect, an extended vibronic theory of resonance HR scattering is developed where the vibronic interaction including the proximate solvent molecule (intermolecular vibronic coupling) is explicitly introduced in the solute hyperpolarizability tensor. The potential of "molecular near-field HR spectroscopy," which selectively detects molecules existing in the close vicinity of a HR probe in complex chemical or biological systems, is discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号