首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Upper bounds on the complexity of algebraic cryptanalysis of ciphers with a low multiplicative complexity
Authors:Pavol Zajac
Institution:1.Slovak University of Technology in Bratislava,Bratislava,Slovakia
Abstract:Lightweight cipher designs try to minimize the implementation complexity of the cipher while maintaining some specified security level. Using only a small number of AND gates lowers the implementation costs, and enables easier protections against side-channel attacks. In our paper we study the connection between the number of AND gates (multiplicative complexity) and the complexity of algebraic attacks. We model the encryption with multiple right-hand sides (MRHS) equations. The resulting equation system is transformed into a syndrome decoding problem. The complexity of the decoding problem depends on the number of AND gates, and on the relative number of known output bits with respect to the number of unknown key bits. This allows us to apply results from coding theory, and to explicitly connect the complexity of the algebraic cryptanalysis to the multiplicative complexity of the cipher. This means that we can provide asymptotic upper bounds on the complexity of algebraic attacks on selected families of ciphers based on the hardness of the decoding problem.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号