首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of Nonionic Surfactants by High Performance Liquid Chromatography
Authors:N Garti  V R Kaufman  A Aserin
Institution:The Casali Institute of Applied Chemistry School of Applied Science and Technology The Hebrew University of Jerusalem , 91904 , Jerusalem , Israel
Abstract:Abstract

This review discusses the principles of immobilized metal ion affinity chromatography (IMAC) and its applications to protein separations. IMAC functions by binding the accessible electron-donating pendant groups of a protein - such as histidine, cysteine, and tryptophan - to a metal ion which is held by a chelating group covalently attached on a stationary support. A common chelating group is iminodiacetate. The ions commonly used are of borderline or soft metals, such as Cu2+, Ni2+, Co2+, and Zn2+. Protein retention in IMAC depends on the number and type of pendant groups which can interact with the metal. The interaction is affected by a variety of independent variables such as pH, temperature, solvent type, salt type, salt concentration, nature of immobilized metal and chelate, ligand density, and protein size. Proteins are usually eluted by a decreasing pH gradient or by an increasing gradient of a competitive agent, such as imidazole, in a buffer. There are still several unresolved issues in IMAC. The exact structures of protein-immobilized metal complexes need to be known so that retention behavior of proteins can be fully understood and sorbent structures can be optimized. Engineering parameters, such as adsorption/desorption rate constants, sorbent capacities, and intraparticle diffusivities, need to be developed for most protein systems. Engineering analysis and quantitative understanding are also needed so that IMAC can be used efficiently for large scale protein separations.
Keywords:Pervaporation  Modelling  Polymeric membranes  Mass transport
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号