首页 | 本学科首页   官方微博 | 高级检索  
     


Light-directed movement of polymer microstructures
Authors:Northen Trent R  Woodbury Neal W
Affiliation:Department of Chemistry and Biochemistry, Arizona State University, and Biodesign Institute at Arizona State University, Tempe, Arizona 85287-1604, USA. tn@asu.edu
Abstract:Light has been used to induce photochemical changes in the surface chemistry of porous polymer microstructures giving rise to a substantial change in volume. When illumination is asymmetric, this results in light-directed motion of the structure. Swellable trimethylolpropane trimethacrylate cross-linked poly(2-hydroxylethyl methacrylate) microstructures were constructed by azo-bis-isobutyronitrile photopolymerization using a 20 x 0.5 NA microscope objective and 365 nm laser excitation. Structures were aminiated with glycine and protected with the photolabile group 4-nitroveratryloxycarbanyl (NVOC). Addition of NVOC resulted in a volume increase >10% when performed in the solvent N,N'-dimethylformamide. Photochemical cleavage of NVOC using asymmetric illumination of a cone-shaped microstructure with a 365 nm laser induced polymer shrinkage in excess of 4% at the base of the cone and resulted in a maximum velocity of 1 mm/s at the tip of the cone. Symmetric illumination gave rise to displacement of solvent from the microstructure due to shrinkage with a velocity in excess of 0.01 mm/s. This system could in principle be used for light-directed movement of micromechanical systems, optical control of microfluidics, or light activated chemical delivery.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号