首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Giant intrinsic magnetic hardness
Authors:H Oesterreicher
Institution:(1) Department of Chemistry, University of California, San Diego, 92093 La Jolla, Ca, USA
Abstract:Crystallographically partly randomized materials with high magnetic anisotropy exhibit anisotropy and exchange fluctuations. Possibly the most dramatic consequence of these interaction fluctuations is the presence of giant intrinsic magnetic hardness observed, especially at cryogenic temperatures. This magnetic hardness (resistance to demagnetization) is anintrinsic solid state property, quite in contrast with hardness in technologically important materials based on the presence of fine particles or precipitate phases. It introduces rather a further variety in the phenomenology of interaction fluctuation materials such as spin glasses, representing the extreme case of high anisotropy and high moment concentrations. In this paper the phenomenon of strong intrinsic magnetic hardness is reviewed, and some new experimental data are presented for homogeneous pseudobinary regions of composition on the basis of such compounds as SmNi5, SmCu5, SmCo5, TbFe2 and others. Magnetic hardness in some of these cases reaches the highest values found so far for any class of materials. For instance, maximum values of coercive force of aboutH c=230 kOe are observed for SmCo5−xNix. Even higher values are extrapolated in other cases. Maximum values ofH c are observed in materials with ordering temperatures of order 60–200 K. A strong temperature and a weaker time dependence ofH c is observed and discussed on the basis of theories involving thermal activation of domain propagation. Comparisons are drawn with effects generally observed in magnetically hard materials, and the relationship of intrinsic magnetic hardness to technologically interesting materials is discussed. Tentative conclusions as to the details of the origins of giant intrinsic magnetic hardness are drawn and areas of future interest are indicated. This study was supported by a grant from the National Science Foundation.
Keywords:75  20  75  60
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号