首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural and electronic properties of the [FeFe] hydrogenase H-cluster in different redox and protonation states. A DFT investigation
Authors:Bruschi Maurizio  Greco Claudio  Fantucci Piercarlo  De Gioia Luca
Institution:Department of Environmental Science, University of Milano-Bicocca, Piazza della Scienza 1 20126-Milan, Italy. maurizio.bruschi@unimib.it
Abstract:The molecular and electronic structure of the Fe 6S 6 H-cluster of FeFe] hydrogenase in relevant redox and protonation states have been investigated by DFT. The calculations have been carried out according to the broken symmetry approach and considering different environmental conditions. The large negative charge of the H-cluster leads, in a vacuum, to structures different from those observed experimentally in the protein. A better agreement with experimental data is observed for solvated complexes, suggesting that the protein environment could buffer the large negative charge of the H-cluster. The comparison of Fe 6S 6 and Fe 2S 2 DFT models shows that the presence of the Fe 4S 4 moiety does not affect appreciably the geometry of the 2Fe] H cluster. In particular, the Fe 4S 4 cluster alone cannot be invoked to explain the stabilization of the mu-CO forms observed in the enzyme (relative to all-terminal CO species). As for protonation of the hydrogen cluster, it turned out that mu-H species are always more stable than terminal hydride isomers, leading to the conclusion that specific interactions of the H-cluster with the environment, not considered in our calculations, would be necessary to reverse the stability order of mu-H and terminal hydrides. Otherwise, protonation of the metal center and H 2 evolution in the enzyme are predicted to be kinetically controlled processes. Finally, subtle modifications in the H-cluster environment can change the relative stability of key frontier orbitals, triggering electron transfer between the Fe 4S 4 and the Fe 2S 2 moieties forming the H-cluster.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号