首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dinuclear Zn(II) complex catalyzed phosphodiester cleavage proceeds via a concerted mechanism: a density functional theory study
Authors:Gao Hui  Ke Zhuofeng  DeYonker Nathan J  Wang Juping  Xu Huiying  Mao Zong-Wan  Phillips David Lee  Zhao Cunyuan
Institution:MOE Key Laboratory of Bioinorganic and Synthetic Chemistry/KLGHEI of Environment and Energy Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, P. R. China.
Abstract:Density functional theory (DFT) calculations were used to study the mechanism for the cleavage reaction of the RNA analogue HpPNP (HpPNP = 2-hydroxypropyl-4-nitrophenyl phosphate) catalyzed by the dinuclear Zn(II) complex of 1,3-bis(1,4,7-triazacyclonon-1-yl)-2-hydroxypropane (Zn(2)(L(2)O)). We present a binding mode in which each terminal phosphoryl oxygen atom binds to one zinc center, respectively, and the nucleophilic 2-hydroxypropyl group coordinates to one of the zinc ions, while the hydroxide from deprotonation of a water molecule coordinates to the other zinc ion. Our calculations found a concerted mechanism for the HpPNP cleavage with a 16.5 kcal/mol reaction barrier. An alternative proposed stepwise mechanism through a pentavalent oxyphosphorane dianion reaction intermediate for the HpPNP cleavage was found to be less feasible with a significantly higher energy barrier. In this stepwise mechanism, the deprotonation of the nucleophilic 2-hydroxypropyl group is accompanied with nucleophilic attack in the rate-determining step. Calculations of the nucleophile (18)O kinetic isotope effect (KIE) and leaving (18)O KIE for the concerted mechanism are in reasonably good agreement with the experimental values. Our results indicate a specific-base catalysis mechanism takes place in which the deprotonation of the nucleophilic 2-hydroxypropyl group occurs in a pre-equilibrium step followed by a nucleophilic attack on the phosphorus center. Detailed comparison of the geometric and electronic structure for the HpPNP cleavage reaction mechanisms in the presence/absence of catalyst revealed that the catalyst significantly altered the determining-step transition state to become far more associative or tight, that is, bond formation to the nucleophile was remarkably more advanced than leaving group bond fission in the catalyzed mechanism. Our results are consistent with and provide a reliable interpretation for the experimental observations that suggest the reaction occurs by a concerted mechanism (see Humphry, T.; Iyer, S.; Iranzo, O.; Morrow, J. R.; Richard, J. P.; Paneth, P.; Hengge, A. C. J. Am. Chem. Soc. 2008, 130, 17858-17866) and has a specific-base catalysis character (see Yang, M.-Y.; Iranzo, O.; Richard, J. P.; Morrow, J. R. J. Am. Chem. Soc. 2005, 127, 1064-1065).
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号