首页 | 本学科首页   官方微博 | 高级检索  
     


Automated analysis of individual particles using a commercial capillary electrophoresis system
Authors:Ahmadzadeh Hossein  Dua Rajat  Presley Andrew D  Arriaga Edgar A
Affiliation:Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA.
Abstract:Capillary electrophoretic analysis of individual submicrometer size particles has been previously done using custom-built instruments. Despite that these instruments provide an excellent signal-to-noise ratio for individual particle detection, they are not capable of performing automated analyses of particles. Here we report the use of a commercial Beckman P/ACE MDQ capillary electrophoresis (CE) instrument with on-column laser-induced fluorescence (LIF) detection for the automated analysis of individual particles. The CE instrument was modified with an external I/O board that allowed for faster data acquisition rates (e.g. 100 Hz) than those available with the standard instrument settings (e.g. 4 Hz). A series of eight hydrodynamic injections expected to contain 32 +/- 6 particles, each followed by an electrophoretic separation at -300 V cm(-1) with data acquired at 100 Hz, showed 28 +/- 5 peaks corresponding to 31.9 particles as predicted by the statistical overlap theory. In contrast, a similar series of hydrodynamic injections followed by data acquisition at 4 Hz revealed only 8 +/- 3 peaks suggesting that the modified system is needed for individual particle analysis. Comparison of electropherograms obtained at both data acquisition rates also indicate: (i) similar migration time ranges; (ii) lower variation in the fluorescence intensity of individual peaks for 100 Hz; and (iii) a better signal-to-noise ratio for 4 Hz raw data. S/N improved for 100 Hz when data were smoothed with a binomial filter but did not reach the S/N values previously reported for post-column LIF detection. The proof-of-principle of automated analysis of individual particles using a commercially available CE system described here opens exciting possibilities for those interested in the study and analyses of organelles, liposomes, and nanoparticles.
Keywords:Individual particle analysis  Capillary electrophoresis  Fluorescence detection  Latex microspheres
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号