首页 | 本学科首页   官方微博 | 高级检索  
     


Triplet formation involving a polar transition state in a well-defined intramolecular perylenediimide dimeric aggregate
Authors:Veldman Dirk  Chopin Stéphanie M A  Meskers Stefan C J  Groeneveld Michiel M  Williams René M  Janssen René A J
Affiliation:Molecular Materials and Nanosystems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands.
Abstract:A cofacially stacked perylenediimide (PDI) dimer with a xanthene linker was studied under a variety of conditions (solvent, temperature) and serves as a model for the molecular interactions occurring in solid films. Intrinsically, the PDI units have a fluorescence quantum yield (Phi F) close to unity, but Phi F is lowered by a factor of 6-50 at room temperature when two PDI moieties are held in a cofacial arrangement, while the decay time of the most emissive state is increased significantly (tau F = 27 ns in toluene) compared to a monomeric PDI molecule (tau F = 4 ns). Fluorescence measurements show a strong solvent and temperature dependence of the characteristics of the emissive excited state. In a glassy matrix of toluene (TOL) or 2-methyltetrahydrofuran (2-MeTHF), Phi F is high, and the decay time is long (tau F = approximately 50 ns). At higher temperature, both Phi F and tau F are reduced. Interestingly, at room temperature, Phi F and tau F are also reduced with increasing solvent polarity, revealing the presence of a polar transition state. Photoinduced absorption of the stacked molecules from the picosecond to the microsecond time scale shows that after photoexcitation reorganization occurs in the first nanoseconds, followed by intersystem crossing (ISC), producing the triplet excited state. Using singlet oxygen ( (1)Delta g) luminescence as a probe, a triplet quantum yield (Phi T) greater than 50% was obtained in air-saturated 2-Me-THF. Triplet formation is exceptional for PDI chromophores, and the enhanced ISC is explained by a decay involving a highly polar transition state.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号