Abstract: | A number of theoretical papers have been devoted to an investigation of the relaxation kinetics of the population of a system of rotational levels of molecules in a stream of gas freely expanding from a sonic nozzle [1–3]. The complexity of the task of constructing models of relaxation and of collisions consistent in accuracy, however, as well as the difficulties in solving the resulting system of kinetic and gas-dynamic equations, lead to the necessity of using substantial approximations. Some disagreement between the experimental data and calculated results [1, 2] requires an evaluation of the accuracy of the various approximations used and further refinement of the theoretical models. In contrast to [1], in order to bring out the possible mutual influence of nonequilibrium energy exchange between the degrees of freedom of nitrogen molecules and the variation of the gas-dynamic parameters, the calculation presented below is based on a numerical solution of a self-consistent system of kinetic and gas-dynamic equations for the populations of rotational states and the temperature, density, and velocity of gas in the stream. Collisional probabilities of rotational transitions, calculated with allowance for the long-range part of the potential of the interaction between molecules [4], are used for this.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 9–16, May–June, 1986. |