首页 | 本学科首页   官方微博 | 高级检索  
     


Nanoparticle coding: size-based assays using atomic force microscopy
Authors:Pris Andrew D  Porter Marc D
Affiliation:Ames Laboratory-USDOE, Institute for Combinatorial Discovery, and Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA.
Abstract:Described herein is a novel strategy for the construction and interrogation of an assay platform based on (1) the size encoding of labeled nanoparticles; (2) the high imaging resolution of atomic force microscopy; and (3) evaporatively driven self-assembly of dense nanoparticle layers. This strategy employs two different sized nanoparticles that couple in the presence of a target analyte. In this example, one set of particles is a few hundred nanometers in size and acts as a capture substrate, while a second set of smaller particles serve as the analyte label. Thus, by forming an evaporatively assembled layer from a mixture of the two particle dispersions, the imaged size of the smaller particles when bound to the larger capture particles identifies the presence of the analyte. This letter demonstrates the feasibility of our bar-code strategy by concept tests using the binding specificity of biotin-modified silica nanoparticles (300-nm diameter) with streptavidin-labeled gold nanoparticles (10-nm diameter). The potential to extensively multiplex this assay strategy is briefly discussed.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号