首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Convergence rate of approximate solutions to weakly coupled nonlinear systems
Authors:Haim Nessyahu
Abstract:We study the convergence rate of approximate solutions to nonlinear hyperbolic systems which are weakly coupled through linear source terms. Such weakly coupled $2 \times 2$ systems appear, for example, in the context of resonant waves in gas dynamics equations.

This work is an extension of our previous scalar analysis. This analysis asserts that a One Sided Lipschitz Condition (OSLC, or $\mathrm{Lip}^+$-stability) together with $W^{-1,1}$-consistency imply convergence to the unique entropy solution. Moreover, it provides sharp convergence rate estimates, both global (quantified in terms of the $W^{s,p}$-norms) and local.

We focus our attention on the $\mathrm{Lip}^+$-stability of the viscosity regularization associated with such weakly coupled systems. We derive sufficient conditions, interesting for their own sake, under which the viscosity (and hence the entropy) solutions are $\mathrm{Lip}^+$-stable in an appropriate sense. Equipped with this, we may apply the abovementioned convergence rate analysis to approximate solutions that share this type of $\mathrm{Lip}^+$-stability.

Keywords:
点击此处可从《Mathematics of Computation》浏览原始摘要信息
点击此处可从《Mathematics of Computation》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号