首页 | 本学科首页   官方微博 | 高级检索  
     


Controllable growth of low-dimensional nanostructures on well-defined surfaces
Authors:Qin Zhi-Hui
Affiliation:State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract:The controllable growth of nanostructures with desired geometric order and well-defined shapes has stimulated great interest due to its applicability in the development of microelectronic devices. Self-assembly is an efficient and versatile way to guide the atoms or molecules into low-dimensional nanostructures as a consequence of balancing complex interplay between adsorbate-adsorbate and adsorbate-substrate interfacial interactions. The tailoring of low-dimensional nanostructures by control of inter-adsorbate and adsorbate-substrate interfacial interactions is reviewed. Such inherent interactions greatly influence not only the size and shape of the growing nanostructures, but also their chemical identity. The degree of interaction between adsorbates can be controlled via preparation procedures, opening up the study of the influence of this phenomenon with respect to reactivity and catalytic behavior. The formation of well-defined molecular layers can be controlled not only by repulsive molecule-molecule interaction but also by symmetry matching or charge transfer between adsorbed molecules and the substrate. It has become obvious that inter-adsorbate and adsorbate-substrate interfacial interactions can be tuned to fabricate diverse surface nanostructures from semiconductor, metallic, and molecular materials.
Keywords:nanostructures   self-assembly   intermolecular interactions   scanning tunneling microscopy
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号