首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemical consequences of cutaneous photoageing
Authors:Thurstan Sarah A  Gibbs Neil K  Langton Abigail K  Griffiths Christopher Em  Watson Rachel Eb  Sherratt Michael J
Institution:Developmental Biomedicine Research Groups, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK. michael.sherratt@manchester.ac.uk.
Abstract:ABSTRACT: Human skin, in common with other organs, ages as a consequence of the passage of time, but in areas exposed to solar ultraviolet radiation, the effects of this intrinsic ageing process are exacerbated. In particular, both the severity and speed of onset of age-related changes, such as wrinkle formation and loss of elasticity, are enhanced in photoaged (also termed extrinsically aged) as compared with aged, photoprotected, skin. The anatomy of skin is characterised by two major layers: an outer, avascular, yet highly cellular and dynamic epidermis and an underlying vascularised, comparatively static and cell-poor, dermis. The structural consequences of photoageing are mainly evident in the extracellular matrix-rich but cell-poor dermis where key extracellular matrix proteins are particularly susceptible to photodamage. Most investigations to date have concentrated on the cell as both a target for and mediator of, ultraviolet radiation-induced photoageing. As the main effectors of dermal remodelling produced by cells (extracellular proteases) generally have low substrate specificity, we recently suggested that the differential susceptibility of key extracellular matrix proteins to the processes of photoageing may be due to direct, as opposed to cell-mediated, photodamage.In this review, we discuss the experimental evidence for ultraviolet radiation (and related reactive oxygen species)-mediated differential degradation of normally long lived dermal proteins including the fibrillar collagens, elastic fibre components, glycoproteins and proteoglycans. Whilst these components exhibit highly diverse primary and hence macro- and supra-molecular structures, we present evidence that amino acid composition alone may be a useful predictor of age-related protein degradation in both photoexposed and, as a consequence of differential oxidation sensitivity, photoprotected, tissues.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号