首页 | 本学科首页   官方微博 | 高级检索  
     


Three-dimensional parabolic equation model for seismo-acoustic propagation: Theoretical development and preliminary numerical implementation
Affiliation:1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;2. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China
Abstract:A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudinal direction, and the depth direction, respectively. Two sets of 3D PEs for horizontally homogenous media are derived by rewriting the 3D elastic motion equations and simultaneously choosing proper dependent variables. The numerical scheme is for now restricted to the y-independent bathymetry. Accuracy of the numerical scheme is validated, and its azimuthal limitation is analyzed. In addition, effects of horizontal refraction in a wedge-shaped waveguide and another waveguide with a polyline bottom are illustrated. Great efforts should be made in future to provide this model with the ability to handle arbitrarily irregular fluid-elastic interfaces.
Keywords:three-dimensional parabolic equation  sound propagation  seismo-acoustic waveguides  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号