首页 | 本学科首页   官方微博 | 高级检索  
     


Effects of gas pressure on plasma characteristics in dual frequency argon capacitive glow discharges at low pressure by a self-consistent fluid model
Affiliation:1. Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), School of Physics, Dalian University of Technology, Dalian 116024, China;2. School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
Abstract:A self-consistent fluid model for dual radio frequency argon capacitive glow discharges at low pressure is established. Numerical results are obtained by using a finite difference method to solve the model numerically, and the results are analyzed to study the effect of gas pressure on the plasma characteristics. It shows that when the gas pressure increases from 0.3 Torr (1 Torr=1.33322×102 Pa) to 1.5 Torr, the cycle-averaged plasma density and the ionization rate increase; the cycle-averaged ion current densities and ion energy densities on the electrodes electrode increase; the cycle-averaged electron temperature decreases. Also, the instantaneous electron density in the powered sheath region is presented and discussed. The cycle-averaged electric field has a complex behavior with the increasing of gas pressure, and its changes take place mainly in the two sheath regions. The cycle-averaged electron pressure heating, electron ohmic heating, electron heating, and electron energy loss are all influenced by the gas pressure. Two peaks of the electron heating appear in the sheath regions and the two peaks become larger and move to electrodes as the gas pressure increases.
Keywords:dual frequency  gas pressure  glow discharge  
本文献已被 CNKI 等数据库收录!
点击此处可从《中国物理 B》浏览原始摘要信息
点击此处可从《中国物理 B》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号