首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photophysical Studies of A2-E, Putative Precursor of Lipofuscin, in Human Retinal Pigment Epithelial Cells
Authors:Rinaldo Cubeddu  Paola Taroni  Dan-Ning Hu  Naomi Sakai  Koji Nakanishi  Joan E Roberts
Institution:INFM-Department of Physics and CEQSE-CNR, Politecnico di Milano, Italy.
Abstract:With age, human retinal pigment epithelial cells accumulate lipofuscin that can absorb photons in the visible range leading to light-induced damage and impaired vision. A putative precursor of lipofuscin, 2-2,6-dimethyl-8-(2,6,6-trimethyl-1-cyclohexen-1-yl)-1E,3E, 5E,7E- octatetraenyl]-1-(2-hydroxyethyl)-4-4-methyl-6-(2,6,6-trimethyl-1 - cyclohexen-1-yl)-1E,3E,5E-hexatrienyl]-pyridinium (A2-E), has recently been isolated and characterized from aged human retinal pigment epithelial cells. We have found that A2-E inhibits the growth of human retinal pigment epithelial cells at concentrations greater than 1 microM. Time-resolved fluorescence measurements of 1 microM A2-E in solution, performed under 413 nm excitation, showed that fluorescence wave forms integrated across the spectrum (450-600 nm) were best-fitted with three decay times in the nanosecond and subnanosecond time scale: 6.6, 1.9 and 0.33 ns. Untreated retinal pigment epithelial cells were characterized by three fluorescence lifetimes: 6.3, 1.7 and 0.35 ns. In retinal pigment epithelial cells treated with 1 microM A2-E, the fluorescence decay was significantly faster, with the marked presence (approximately equal to 30%) of a fourth short lifetime (0.12 ns). These fluorescence decay times for A2-E bound to human retinal pigment epithelial cells are similar to those of lipofuscin granules isolated from aged human retinal pigment epithelial cells. This similarity supports the hypothesis that A2-E is a precursor of lipofuscin and suggests that A2-E may play a role in the overall light damage associated with age-related retinal diseases.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号