首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Matrix isolation infrared spectroscopic and quantum chemical studies on the rotational isomers of orotic acid (6-carboxyuracil)
Institution:1. Department of Chemistry, University of Ioannina, GR-45110 Ioannina, Greece;2. Department of Physics, University of Ioannina, GR-45110 Ioannina, Greece
Abstract:The infrared spectrum of orotic acid (6-carboxyuracil) isolated in a low-temperature argon matrix is presented, for the first time. This molecule is a key precursor in the biosynthesis of all pyrimidine nucleotides in living organisms. The comprehensive theoretical studies on the rotational isomerism of orotic acid have been performed by an ab initio MP2 and three density functional methods (B3LYP, M06 and M06-2X). All theoretical methods have predicted that four possible conformers of orotic acid may exist in the gas phase. The calculated barrier height for rotation of the COOH group around the Csingle bondC bond (37 kJ mol−1, M06-2X) is much lower than the barriers for the OH rotation around the Csingle bondO bond (47 and 51 kJ mol−1). The Gibbs free energies, relative stabilities and the mole fractions of isomers at different temperatures, in the gas phase, have been determined.The anharmonic vibrational frequencies, infrared intensities and potential energy distributions (PEDs) were computed for two isomers of the lowest energy (A and B) using the B3LYP method with the aug-cc-pVTZ basis set. The theoretical anharmonic IR spectra are in excellent agreement with the experiment. It is concluded that the most stable conformer (A) is the predominant form in a low-temperature argon matrix, while the mole fraction of the less stable B conformer can be assessed as ca. 15%. No spectral indications of the presence of other isomers (C and D) in the matrix were detected.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号