首页 | 本学科首页   官方微博 | 高级检索  
     


Rearrangement Pathways of the a4 Ion of Protonated YGGFL Characterized by IR Spectroscopy and Modeling
Authors:Béla Paizs  Benjamin J. Bythell  Philippe Maître
Affiliation:1.Computational Proteomics Group,German Cancer Research Center (DKFZ),Heidelberg,Germany;2.Laboratoire de Chimie Physique, Université Paris Sud, UMR8000 CNRS, Faculté des Sciences,Orsay Cedex,France
Abstract:The structure of the a 4 ion from protonated YGGFL was studied in a quadrupole ion trap mass spectrometer by ‘action’ infrared spectroscopy in the 1000–2000 cm–1 (‘fingerprint’) range using the CLIO Free Electron Laser. The potential energy surface (PES) of this ion was characterized by detailed molecular dynamics scans and density functional theory calculations exploring a large number of isomers and protonation sites. IR and theory indicate the a 4 ion population is primarily populated by the rearranged, linear structure proposed recently (Bythell et al., J. Am. Chem. Soc. 2010, 132, 14766). This structure contains an imine group at the N- terminus and an amide group –CO–NH2 at the C-terminus. Our data also indicate that the originally proposed N-terminally protonated linear structure and macrocyclic structures (Polfer et al., J. Am. Chem. Soc. 2007, 129, 5887) are also present as minor populations. The clear differences between the present and previous IR spectra are discussed in detail. This mixture of gas-phase structures is also in agreement with the ion mobility spectrum published by Clemmer and co-workers recently (J. Phys. Chem. A 2008, 112, 1286). Additionally, the calculated cross-sections for the rearranged structures indicate these correspond to the most abundant (and previously unassigned) feature in Clemmer’s work.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号