首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Preparation of solvent-free, pore-spanning lipid bilayers: modeling the low tension of plasma membranes
Authors:Kocun Marta  Lazzara Thomas D  Steinem Claudia  Janshoff Andreas
Institution:Institute of Physical Chemistry, University of Go?ttingen, Tammannstrasse 6, 37077 Go?ttingen, Germany.
Abstract:Plasma membrane tension, produced by the underlying cytoskeleton, governs many dynamic processes such as fusion, blebbing, exo- and endocytosis, cell migration, and adhesion. Here, a new protocol is introduced to model this intricate and often overlooked aspect of the plasma membrane. Lipid bilayers spanning pores of 600 nm radius were prepared by adsorption and spreading of giant unilamellar vesicles (GUVs) on moderately hydrophilic porous substrates prepared by gold-coating and subsequent self-assembly of a mercaptoethanol monolayer. Rupture of GUVs formed tens of micrometer sized pore-spanning membrane patches displaying low tension of σ ≤ 3.5 mN m(-1) and lateral diffusion constants of about 8 μm(2) s(-1). Site-specific force indentation experiments were performed to determine membrane tension as a function of lipid composition: for pure DOPC bilayers, a tension of 1.018 ± 0.014 mN m(-1) was measured, which was increased by the addition of cholesterol to 3.50 ± 0.15 mN m(-1). Compared to DOPC, POPC bilayers displayed a larger tension of 2.00 ± 0.09 mN m(-1). Addition and subsequent partitioning of 2-propanol was shown to significantly reduce the membrane tension as a function of its concentration.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号