首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Computer simulation studies of anisotropic systems. XXII. An equimolar mixture of rods and discs: A biaxial nematic?
Authors:R Hashim  G R Luckhurst  F Prata  S Romano
Institution:  a Department of Chemistry, University of Southampton, Southampton, England b Department of Chemistry, University of Malaya, Kuala Lumpur, Malaysia c Department of Physics, University of Pavia, Pavia, Italy
Abstract:In principle, binary mixtures of rod-like and disc-like particles should exhibit a biaxial nematic phase, but in practice phase separation into two uniaxial nematic phases prevents this. Here, we report the results of a computer simulation study of an equimolar mixture of rods and discs in which phase separation is not allowed. The particles are confined to the sites of a simple cubic lattice in which each rod is surrounded by six discs and vice versa. Neighbouring particles interact such that they prefer to align with their respective symmetry axes orthogonal to each other. In contrast, the interaction between next nearest neighbours, which are either rods or discs, is such that their symmetry axes tend to be parallel. Monte Carlo simulations of this model mixture show that an orientationally ordered phase exists at low temperatures. This nematic phase has overall uniaxial symmetry and the particles have a negative second rank orientational order parameter, indicating that they tend to align at right angles to the director. The two interpenetrating sub-lattices containing either rods or discs, however, exhibit a biaxial nematic phase. The results of the simulation are found to be in reasonable agreement with the predictions of a molecular field theory for this model mixture. We have also investigated the behaviour of this mixture when the rods and discs are allowed to exchange between their lattice sites. The mixture is found to separate into two uniaxial nematic phases composed essentially of either rods or discs, as expected.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号