首页 | 本学科首页   官方微博 | 高级检索  
     检索      


De novo design and synthesis of dipyridopurinone derivatives as visible-light photocatalysts in productive guanylation reactions
Authors:Yameng Wan  Hao Wu  Nana Ma  Jie Zhao  Zhiguo Zhang  Wenjing Gao  Guisheng Zhang
Institution:Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University, 46 East of Construction Road, Xinxiang Henan 453007 China,
Abstract:Described here is the de novo design and synthesis of a series of 6H-dipyrido1,2-e:2′,1′-i]purin-6-ones (DPs) as a new class of visible-light photoredox catalysts (PCs). The synthesized DP1–5 showed their λAbs(max) values in 433–477 nm, excited state redox potentials in 1.15–0.69 eV and −1.41 to −1.77 eV (vs. SCE), respectively. As a representative, DP4 enables the productive guanylation of various amines, including 1°, 2°, and 3°-alkyl primary amines, secondary amines, aryl and heteroaryl amines, amino-nitrile, amino acids and peptides as well as propynylamines and α-amino esters giving diversities in biologically important guanidines and cyclic guanidines. The photocatalytic efficacy of DP4 in the guanylation overmatched commonly used Ir and Ru polypyridyl complexes, and some organic PCs. Other salient merits of this method include broad substrate scope and functional group tolerance, gram-scale synthesis, and versatile late-stage derivatizations that led to a derivative 81 exhibiting 60-fold better anticancer activity against Ramos cells with the IC50 of 0.086 μM than that of clinical drug ibrutinib (5.1 μM).

A novel visible-light photocatalyst was designed and its photocatalytic efficacy in the guanylation of amines overmatched common metal-core and organic photocatalysts.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号