首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydrogen-induced reconstruction on a high step density W(001) surface
Authors:JF Wendelken  G-C Wang
Institution:Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
Abstract:The hydrogen-induced reconstruction on a high step density W(001) crystal, (2×2)R45°-H, with steps oriented parallel to the 110] and ~ 28 Å average terrace width has been investigated using LEED symmetry, beam shape analyses, and EELS. The symmetry of the LEED pattern is observed to change from p2mg for the (2×2)R45° clean surface reconstruction to c2mm for the commensurate phase (2×2)R45°-H reconstruction. Correspondingly, the shapes of the half-order beams indicate that the hydrogen-induced reconstruction domains are much less elongated than the clean surface domains. A splitting of each half-order beam into four beams at higher exposures indicates the existence of two domains of the incommensurate phase. A commensurate phase v1 vibrational loss peak centered at 160 meV in the EELS spectrum broadens on the low-energy side during the incommensurate phase and then shifts toward 130 meV and narrows as the (1×1)-H saturation structure develops. These observations imply that there is no long-range inhibition ( ~ 20 Å) to the formation of either commensurate or incommensurate phase; hydrogen induces a switching of the atomic displacements from 〈110〉 directions on a clean surface to 〈100〉 directions, even with steps oriented parallel to the 110]; and in the incommensurate phase there is a distribution of hydrogen site geometries with the most probable geometry more like the commensurate phase geometry than the saturation phase geometry.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号