首页 | 本学科首页   官方微博 | 高级检索  
     


A self-normalized law of the iterated logarithm for the geometrically weighted random series
Authors:Ke Ang Fu  Wei Huang
Affiliation:1.School of Statistics and Mathematics, Zhejiang Gongshang University, Hangzhou 310018, P. R. China;2.Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China
Abstract:Let {X,X n ; n ≥ 0} be a sequence of independent and identically distributed random variables with EX = 0, and assume that EX 2 I(|X| ≤ x) is slowly varying as x→∞, i.e., X is in the domain of attraction of the normal law. In this paper, a self-normalized law of the iterated logarithm for the geometrically weighted random series (sumnolimits_{n = 0}^infty {{beta ^n}{X_n}left( {0 < beta < 1} right)} ) is obtained, under some minimal conditions.
Keywords:Domain of attraction of the normal law  geometrically weighted series  law of the iterated logarithm  self-normalization  slowly varying  
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《数学学报(英文版)》浏览原始摘要信息
点击此处可从《数学学报(英文版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号